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When a small particle is located near an interface, its electric dipole moment can be induced by laser irradiation.
Since the laser light reflects at the interface, this leads to an interference pattern, and the dipole moment is deter-
mined by this total field. In addition, the dipole radiation emitted by the particle reflects at the interface, and this
field adds to the external field. In this fashion, the dipole moment is altered by the field it emits, and as such the emit-
ted radiation modifies its own source. We have derived a simple expression to take this back action into account.
We introduce two resolvent functions, ϒ‖(h) and ϒ⊥(h), which depend on the dimensionless distance h between
the particle and the interface. These functions exhibit resonance features due to the underlying back-action mecha-
nism. It is shown that two, one, or no resonance peaks appear in the induced dipole moment. Whether these peaks
are present depends on the parameters under consideration. The power emitted by the particle depends on h due to
interference between the source radiation and the reflected radiation. With the surface induced contribution to the
dipole moment included, an additional h dependence appears. This dependence shows the resonance peaks, which
may be amenable to experimental observation. ©2021Optical Society of America

https://doi.org/10.1364/JOSAA.419893

1. INTRODUCTION

The power emitted by an oscillating electric dipole moment
depends not only on the state of oscillation of the particle emit-
ting the radiation but also on the environment of the emitter.
It has long been recognized that a nearby interface modifies
the rate of energy emission of the oscillating dipole moment.
It has been predicted theoretically [1–10] and confirmed
experimentally [11–19] that the emitted power depends on
the distance between the particle and the interface. In more
recent experiments, nanoparticles are deposited on composite
nano-structured substrates, which opens the door to the design
of systems with unusual reflection spectra [20]. Emitted dipole
radiation (the source field) reflects off the interface, and interfer-
ence between both fields leads to a modification of the emission
rate. Usually, the dipole moment is set in oscillation through
irradiation by a laser. If the laser has angular frequency ω, the
induced dipole moment has the form

d(t)= Re(de−iωt), (1)

with d the complex amplitude. In most theoretical investiga-
tions, the value of d is assumed to be known and determined by
independent means. For instance, if the laser is linearly polar-
ized, then d is real and directed along the polarization direction,
and d(t) oscillates back and forth along the same direction.

In general, laser light will reflect at the surface, and this reflected
field adds to the incident field, giving an interference pattern.
Then the dipole moment is determined by the total electric field
at the location of the dipole.

Interference between the source light and the reflected source
light alters the emission rate, but this mechanism does not
directly affect the value of d. From a more general point of view,
the dipole moment d is induced by the total external electric
field at the location ro of the particle as

d= αEext(ro), (2)

with α the polarizability of the particle (assumed to be a scalar).
If the external field is assumed to be the superposition of the
laser field and its reflection at the surface, then this determines
d, and so d can be considered a given for the problem. However,
the source field also reflects at the interface and adds to the
external field at the location of the particle. This source field
is emitted by the oscillating d(t), so d, as given by Eq. (2), is
altered by the radiation it produces. This altered d changes the
emission by d(t), and this changes the reflected field, which then
alters d again, and so on. In this fashion, the value of d becomes
entangled with the emission process and cannot be determined
independently anymore.
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Fig. 1. The figure shows schematically the setup under considera-
tion. The direction of the dipole vector d is for illustration only, since
in general this vector will be complex-valued.

This self-action on d has been implemented in several
numerical studies of scattering by an object near an interface
[9,21–24], and its general concept is presented in [25] (Section
15.3). An attempt to compute d for a dipole near a single inter-
face is given in [21]. The method is based on image theory and
leads to a gigantic expression for an involved Green’s function.
This function is a sum of two integrals, and each contains an
infinite series of Bessel functions in the integrand. We shall
derive a very simple expression for d, based on the angular
spectrum approach.

2. SETUP

The details of the setup are illustrated in Fig. 1. A dipole is
embedded in a medium with (relative) permittivity ε1 and
(relative) permeability µ1, and both are assumed to be positive.
The dipole is located on the z axis, a distance H away from
an interface with a material medium. This medium can be a
semi-infinite half-space with parameters ε2 and µ2, which may
be complex. Or, it can be a layered structure, as in the figure.
The only requirement is that the reflection of a plane wave can
be accounted for by Fresnel reflection coefficients for s and p
polarization. The positive z axis is taken as shown in the figure,
and the interface is the x y plane. The incident laser beam is indi-
cated by L , and its reflection at the interface by R . The source
radiation (s ) from the dipole is emitted in all directions and is
partially reflected at the interface (r ).

3. LASER AND ITS REFLECTION

The angle of incidence of the laser is θi , and we take the plane of
incidence as the y z plane. The complex amplitude of the electric
field is

EL(r)= EoεL e ikL ·r, (3)

with Eo > 0 the amplitude, εL the complex-valued polarization
vector, normalized as ε∗L · εL = 1, and kL the wave vector. It has
to hold that εL · kL = 0, kL · kL = n1ko, with n1 =

√
ε1µ1 the

index of refraction of the embedding medium, and ko =ω/c
as the wavenumber in free space. The wave vector is explicitly
kL = n1ko(ey sin θi + ez cos θi ). To find the reflected field,
we need to split the incident field in s and p waves. As phase
convention for the polarization vectors, we take es =−ex and
ep =−ey cos θi + ez sin θi . Then we expand εL as

εL = NL

∑
σ=s ,p

aσ eσ , (4)

with

NL =
1√

|a s |
2 + |a p |

2
, (5)

the normalization constant. The constants a s and a p are com-
plex, in general, and these are the free polarization parameters.
For instance, for a s = 1, a p = 0 the laser is linearly polarized in
the x direction and for a s = 1, a p = i the laser is left-circularly
polarized.

The reflected field is then

ER(r)= Eo NL

∑
σ=s ,p

aσ Rσ eσ,r e ikr ·r. (6)

The polarization vectors are es ,r =−ex , ep,r = ey cos θi +

ez sin θi , and the wave vector is kr = n1ko(ey sin θi − ez cos θi ).
Here, Rs and R p are the Fresnel reflection coefficients for s
waves and p waves, respectively. Explicit expressions for a single
interface are given in Section 5. We write EL+R(r) for the sum
of the laser field and the reflected field. We only need this field at
ro, the location of the dipole. It then follows that this field can be
written as

EL+R(ro)= Eom(h), (7)

and the mode structure function m(h) is found to be

m(h)=−NL a s ex (e−iv1h
+ Rs e iv1h)

− NL a pey cos θi (e−iv1h
− R p e iv1h)

+ NL a pez sin θi (e−iv1h
+R p e iv1h). (8)

Here, h = ko H is the dimensionless distance between the dipole
and the interface. On this scale, a distance of 2π corresponds
to a free-space optical wavelength. We have also introduced the
abbreviation v1 = n1 cos θi . With Eqs. (4) and (5) the vector εL

can be constructed, and we can then obtain the alternative form
for the mode structure function:

m(h)= εL,x ex (e−iv1h
+ Rs e iv1h)

+ εL,y ey (e−iv1h
− R p e iv1h)

+ εL,zez(e−iv1h
+R p e iv1h). (9)

From this representation it follows immediately that without the
reflected field this reduces to

m(h)= εL e−iv1h , (10)

which is Eq. (3) at ro =−Hez, apart from the factor Eo.

4. REFLECTION OF THE SOURCE FIELD

The source field of the dipole can be represented as an angular
spectrum of plane waves. Each partial wave in this representa-
tion reflects at the interface, resulting in an angular spectrum
representation of the reflected field in the half-space z< 0 [26]:
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Er (r)=
iµ1ko

8π2εo

∑
σ=s ,p

∫
d2k‖

e ihv1

v1
(d · eσ )Rσ eσ,r e ikr ·r. (11)

We adopt polar coordinates (k‖, φ̃) in the k‖ plane, and we
change variables as u = k‖/ko. The Fresnel reflection coeffi-
cients Rs and R p are functions of u. For each k‖, the integrand is
a plane wave. The wave vectors are kr = k‖ − kov1ez, with

v1(u)=
√

n2
1 − u2. (12)

The branch line for the square root function is taken just below
the negative real axis. For k‖ < n1ko we have 0≤ u < n1, and
the wave vector kr is real. The wave is a traveling wave, similar to
the reflected laser field. Then u = n1 sin θi , with θi the angle of
incidence of the corresponding source wave. These Fresnel coef-
ficients are the same as in Eqs. (6) and (8), so there they need to
be evaluated at u = n1 sin θi . For u > n1, the z component of kr

is imaginary, and the wave is evanescent, decaying exponentially
in the direction away from the interface.

The integral over the polar angle φ̃ is elementary and leads
to a host of Bessel functions. The remaining integrals over u are
Sommerfeld-type integrals, which can be evaluated numerically
[27]. The arguments of the Bessel functions are ukoρ, with ρ
the distance to the z axis. Since we need the field on the z axis,
we have ukoρ = 0, and since Jn(0)= δn,0, all Bessel functions
drop out. For a point on the z axis, we also have kr · r=−kov1z,
and at the location of the dipole this is kr · r= v1h . Therefore,
the two exponentials in Eq. (11) combine as exp(2iv1h). We so
find for the reflected field at the location of the dipole the simple
expression

Er (ro)=
i(n1ko)

3

8πεoε1

[
d‖W‖(h)+ d⊥W⊥(h)

]
. (13)

Here, d‖ and d⊥ are the parallel and perpendicular parts of d
with respect to the surface. The two W functions are

W‖(h)=
1

n3
1

∞∫
0

du
u
v1
[n2

1 Rs (u)− v2
1 R p(u)]e 2iv1h , (14)

W⊥(h)=
2

n3
1

∞∫
0

du
u3

v1
R p(u)e 2iv1h . (15)

Clearly, these functions of h need to be evaluated numerically.
A complication with the integrals in Eqs. (14) and (15) is the

appearance of v1 in the denominators. We see from Eq. (12) that
we have v1 = 0 for u = n1, and this u value is on the integration
axis. So, we have a singularity at u = n1. Also, v1 has a branch
point at u = n1, and this appears in the exponential exp(2iv1h),
which is numerically not attractive. To resolve this problem, we
split the integrals in two parts. The first part is over the range
0≤ u < n1. In this region the waves are traveling. We make the
substitution u = n1(1− t2)1/2, and this gives

W‖(h)tr =

1∫
0

dte iβt
[Rs (t)− t2 R p(t)], (16)

W⊥(h)tr = 2

1∫
0

dte iβt(1− t2)R p(t), (17)

where we have set β = 2n1h . Now the singularities have dis-
appeared, and there is no branch point in the exponentials.
Also, the overall numerical factors are gone, and so is the v2

1
in the integrand of Eq. (14). For the range n1 < u <∞ the
waves are evanescent, and here we make the substitution
u = n1(1+ t2)1/2. This yields the representations

W‖(h)ev
=−i

∞∫
0

dte−βt
[Rs (t)+ t2 R p(t)], (18)

W⊥(h)ev
=−2i

∞∫
0

dte−βt(1+ t2)R p(t). (19)

In these new representations there are no singularities, which
proves that the original 1/v1 singularities are integrable.
Interesting to note is that Eqs. (18) and (19) are Laplace
transforms, withβ as the Laplace parameter.

5. FUNCTIONS Wk(h)

The reflected electric field of the dipole at the location of the
dipole is determined by the functions Wk(h), with k = ‖,⊥ and
Wk(h)=Wk(h)tr+Wk(h)ev. We shall now examine some of the
properties of these functions. Without any computations we see
that

Wk(h)→ 0, h→∞. (20)

The h dependence only comes in through β = 2n1h . For the
traveling parts, the exponential exp(iβt) oscillates very rapidly,
and these fast oscillations integrate to zero. For the evanescent
parts, the exponential exp(−βt) goes to zero. For h→ 0 the
traveling integrals are finite, because the integration is over a
finite range, but the evanescent integrals diverge in the upper
limit. Therefore, for h→ 0 the contributions from the evanes-
cent parts dominate. Let us consider Eq. (16). For small β the
main contribution comes from the range of large t values. The
Fresnel coefficients level off to a finite value for t→∞. The
part t2 exp(−βt) of the integrand has a maximum at t = 1/β,
and for β small, this maximum moves to infinity. So, the term
with Rs (t) becomes negligible when compared to the term with
R p(t). For t large, we can set approximately R p(t)≈ R p(∞),
and the remaining integral over t2 exp(−βt) is 2/β3. Similarly,
the term “1” in the integrand of Eq. (17) can be neglected. We
introduce δk as δ‖ = 1, δ⊥ = 2. We then find

Wk(h)=−
2iδk

β3
R p(∞)+ . . . , h small, k = ‖,⊥. (21)

Here we dropped the superscript ev, since the contribution from
the tr part is on the ellipses. We conclude that both functions
diverge for h small, and they diverge as 1/h3.

At this point it is useful to have the explicit expressions for the
Fresnel coefficients. For a single interface we have
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Rs (u)=
µ2v1 −µ1v2

µ2v1 +µ1v2
, (22)

R p(u)=
ε2v1 − ε1v2

ε2v1 + ε1v2
, (23)

and here we only need R p . For the reflection of the laser beam
we have u = n1 sin θi , but here we also need the extension to the
evanescent region. We have

n2
2 = ε2µ2, (24)

v2(u)2 = n2
2 − u2, (25)

for the index of refraction in medium 2, and for the dimension-
less z component of the wave vector in medium 2. Care should
be exercised in taking the square roots when ε2 andµ2 are com-
plex. We need the values of n2 and v2 for which the imaginary
parts are non-negative. It can be shown that the correct roots are

n2 =
√
ε2
√
µ2, (26)

v2(u)=
√

n2 + u
√

n2 − u. (27)

For n1 and v1 there is no issue since we assume that both ε1 and
µ1 are positive. Equations (22) and (23) express the Fresnel
coefficients as a function of u. To evaluate the integrals in
Eqs. (16)–(19), the appropriate substitutions u→ t need to be
made.

To find R p(∞) from Eq. (23), we notice that we are far in the
evanescent region. We then have v2

2 = n2
2 − n2

1(1+ t2), and for
t large this gives v2 ≈ in1t ≈ v1. We then obtain

R p(∞)=
ε2 − ε1

ε2 + ε1
. (28)

When considering a layer, as in Fig. 1, a similar calculation gives
the same result as in Eq. (28). This can be understood from the
fact that evanescent waves emanating from the interface at z= 0
do not reach the second interface. The real and imaginary parts
are

ReR p(∞)=
1

|ε2 + ε1|
2
(|ε2|

2
− ε2

1), (29)

ImR p(∞)=
2ε1

|ε2 + ε1|
2

Imε2. (30)

Since Imε2 ≥ 0, we have ImR p(∞)≥ 0. For Imε2 > 0 we
then see that ReWk(h)→+∞ for h→ 0. The imaginary
part diverges to −∞ for |ε2|> ε1 and to +∞ for |ε2|< ε1. A
typical example of a W function is shown in Fig. 2. The function
diverges for h small and oscillates for larger h values, eventually
going to zero. In all of the following graphs we shall consider a
single interface and setµ1 =µ2 = 1.

An interesting special case is a perfectly conducting material
(mirror). Then we have Rs =−1, R p = 1, and the integrals in
Eqs. (16)–(19) can be found in closed form. We then obtain

W‖(h)=
2i
β

(
1+

i
β
−

1

β2

)
e iβ, (31)

Fig. 2. Real (solid curve) and imaginary (dashed curve) parts of the
function W‖(h) for a single interface with ε1 = 1.5 and ε2 = 4.5.

W⊥(h)=−
4

β2

(
1+

i
β

)
e iβ . (32)

The oscillatory behavior comes from the factors exp(iβ), and
the limit h→ 0 agrees with Eq. (21) with R p = 1.

6. DIPOLE MOMENT

The induced dipole moment d is determined by the external
field at the location of the particle, as in Eq. (2). The exter-
nal field is the sum of the laser field and its reflection and the
reflected dipole radiation. So we have

d= α[EL+R(ro)+ Er (ro)]. (33)

A convenient quantity is the dimensionless polarizability
volume, defined as

V̄p =
(n1ko)

3

4πεoε1
α. (34)

With Eqs. (7) and (13) we then have

d= αEom(h)+
i
2
V̄p
[
d‖W‖(h)+ d⊥W⊥(h)

]
. (35)

Since d also appears on the right-hand side, this is an equa-
tion for d. We split this vector equation in its parallel and
perpendicular parts, which gives

dk = αEom(h)k +
i
2
V̄pdk Wk(h), k = ‖,⊥. (36)

The solution of this equation is

dk =ϒk(h)m(h)kαEo, k = ‖,⊥, (37)

where we have introduced the two resolvent functions

ϒk(h)=
1

1− i
2 V̄p Wk(h)

, k = ‖,⊥. (38)

The final expression for the dipole moment then becomes

d= [ϒ‖(h)m(h)‖ +ϒ⊥(h)m(h)⊥]αEo. (39)

The result (39) has a transparent interpretation. The functions
ϒ‖(h) andϒ⊥(h) account for the contribution of the reflected
dipole radiation to d. Without this contribution we would have
ϒ‖(h)= 1 and ϒ⊥(h)= 1. The functions m(h)‖ and m(h)⊥
account for the reflected laser light. Without this reflection, the
function m(h) is given by Eq. (10). So, without the surface we
would have

d= αEoεL e−iv1h . (40)
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The functions m(h) and ϒk(h) then modify this expression
to include the laser field and the dipole field reflection at the
interface, respectively. The result for ϒ⊥(h) was derived in
Ref. [9] for a perpendicular dipole moment in vacuum and very
close to the interface with a perfect conductor. We then have
W⊥(h)≈−4i/β3 with Eq. (32), and our result agrees with
Ref. [9] in this limit. They consider the dipole moment as a
function of the frequency ω for a given h , whereas we consider
the h dependence for a givenω.

7. POLARIZABILITY

The properties of the particle enter the solution through the
polarizabilityα, or equivalently, the (dimensionless) polarizabil-
ity volume V̄p . Before proceeding with the specification of α,
we would like to point out that we cannot just adopt any model
for α. Let us consider a particle in a laser beam and embedded
in an ε1, µ1 medium. The dipole moment is then given by
Eq. (40). The power emitted by the source can be computed by
integrating the Poynting vector over a sphere with the particle
in the center. With the known expressions for the electric and
magnetic fields of a dipole, this gives [28]

Ps =
1

2
ω
(n1ko)

3

6πεoε1
d2

o, (41)

and here we have d2
o = d∗ · d= |α|2 E 2

o with Eq. (40).
However, the power absorbed from the laser field is on general
grounds ([25], p. 266):

Pa =−
1

2
ωIm[d∗ · EL(ro)]. (42)

With Eqs. (40) and (3) this becomes

Pa =
1

2
ωE 2

o Imα. (43)

If no energy accumulates in the particle, then clearly we must
have Pa = Ps . This is only possible if

Imα =
(n1ko)

3

6πεoε1
|α|2. (44)

This equation only involves the particle, and it relates the imagi-
nary part ofα to its absolute value. Apparently, this relation must
hold when no energy is dissipated by the particle. With Eq. (34)
this can be expressed in a relation for the polarization volume:

ImV̄p =
2

3
|V̄p |

2. (45)

Since the right-hand side is non-negative, we have

ImV̄p ≥ 0, (46)

and since ImV̄p ≤ |V̄p |, we find

|V̄p | ≤
3

2
. (47)

So, on very general grounds, the absolute value of V̄p has an
upper bound. With Eq. (34) this implies the upper bound
for |α|:

|α| ≤
6πεoε1

(n1ko)
3 . (48)

For a particle in vacuum and a laser wavelength of 500 nm, this
gives |α| ≤ 8.34× 10−32 C ·m2/V, and this upper bound
is independent of any properties of the particle. Relations
(45)–(47) for V̄p do not involve any constants, which shows
the advantage of working with dimensionless variables and
functions.

Relation (44) was derived by considering an embedded dipole
in a laser beam. It is shown in Appendix A that this relation also
guarantees conservation of energy for the problem involving the
surface, as considered here.

Let us now consider a dielectric sphere with radius R and
permittivity εp , assumed to be real. It follows from exact Mie
theory that in the limit of a small particle (n1ko R� 1; the
long-wavelength approximation, or zero-frequency limit) that
the polarizability is [29]

αo = 4πεoε1ηR3, (49)

with corresponding polarization volume

V̄p,o = η(n1 R̄)3. (50)

Here, R̄ = ko R is the dimensionless radius of the particle. The
parameterη is defined as

η=
εp − ε1

εp + 2ε1
. (51)

It is obvious that αo does not satisfy Eq. (44), necessary for
energy conservation. It was derived by Draine [30] that for
ω 6= 0 the expression forα should be replaced by

α =
αo

1− 2
3 iη(n1ko R)3

. (52)

It readily verifies that this α satisfies Eq. (44). This expression
was derived to salvage the validity of the optical theorem for scat-
tering cross sections. As shown earlier, it also guarantees energy
conservation for non-absorbing particles (εp real). A more
elaborate expression was introduced in [23,24] to include effects
of the finite radius R . In terms of the polarizability volume,
Eq. (52) reads

V̄p =
V̄p,o

1− 2
3 i V̄p,o

, (53)

with V̄p,o given by Eq. (50). This expression is to be used in
the resolvents ϒk(h), Eq. (38). The case of a conducting par-
ticle follows by setting η= 1. The parameter η, defined in
Eq. (51), diverges for εp→−2ε1, which may seem cumber-
some. However, this is just an artifact of the representation in
terms ofη. It follows immediately from Eqs. (50) and (53) that

V̄p→
3

2
i, εp→−2ε1. (54)

8. FUNCTIONS ϒk(h)

The resolvents ϒk(h), given by Eq. (38), account for the effect
of the reflected dipole radiation. Far away from the interface
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Fig. 3. Real (solid curve) and imaginary (dashed curve) parts of
the function ϒ‖(h) for a dielectric particle of radius R̄ = 1.2 and for
εp = 3, ε1 = 1, and ε2 = 6. Deviations from the dotted line at unity
represent effects due to the reflected dipole radiation. Without this
effect we would have Reϒ‖(h)= 1 and Imϒ‖(h)= 0.

we have Wk(h)→ 0, and so ϒk(h)→ 1 for h→∞, as could
be expected. Any deviation of ϒk(h) from unity is due to the
reflected dipole radiation. For intermediate h , the functions
Wk(h) are oscillatory, and so the functions ϒk(h) will be oscil-
latory. The main effect is expected to appear when the dipole is
close to the interface. The values of Wk(h) for h small are given
by Eq. (21), and they diverge. The corresponding values for
ϒk(h) then become

ϒk(h)=
ε1 + ε2

ε1 − ε2

1

δkV̄p
β3
[1+ O(β)], h small. (55)

We notice thatϒk(h)→ 0 as h3, no matter the type of the parti-
cle.

A typical example of anϒ function for a dielectric particle is
shown in Fig. 3. The particle cannot come closer to the interface
than its own radius, so the curves only have significance for
h > R̄ . The borderline h = R̄ is indicated by the vertical dashed
line. We see from the figure that ϒ‖(h) has a substantial struc-
ture in the region h < R̄ , but this region is not accessible to the
particle. For h > R̄ we have ϒ‖(h)≈ 1, so the reflected dipole
radiation has as good as no effect here.

It follows from Eq. (38) that we get a division by zero, or a res-
onance, if

V̄p Wk(ho)=−2i, (56)

for a certain ho. From Eq. (47) we have that V̄p is bounded by
|V̄p | ≤ 3/2, and Wk(h) goes to zero for h large. Therefore, this
equation can only have solutions for relatively small ho. For
estimation purposes, we use Eq. (21). We then obtain

δk R p(∞)V̄p ≈ β
3
o , (57)

with solution

ho ≈
1

2n1

3
√
δk R p(∞)V̄p , (58)

if such a solution exists. If ϒ‖(h) has a peak for a certain ho,
then ϒ⊥(h) also has a peak, but at an h value of 3

√
2= 1.26

times larger. So, a⊥ peak is always to the right of a || peak. The
peak heights are unrelated because these are determined by the
ellipses in Eq. (21).

For a dielectric sphere the polarizability volume is given by
Eq. (53). We are looking for solutions with h small. This implies
R̄ small, otherwise the sphere cannot come close enough to the
surface. We then have V̄p ≈ V̄p,o = η(n1 R̄)3. Equation (58)
becomes for k = ‖:

Fig. 4. The figure shows R p(∞) as a function of ε̂2 = ε2/ε1.

ho ≈
1

2
R̄ 3
√
ηR p(∞). (59)

Here, η is given by Eq. (51) and R p(∞) by Eq. (28). Assuming
ε2 to be real, so that R p(∞) is real, we see that we can only have
a solution if η and R p(∞) have the same sign. Furthermore, we
must have ho > R̄ , which gives the restriction

ηR p(∞) > 8, (60)

for a ‖ resonance to appear. For instance, for a conducting sub-
strate we have R p(∞)= 1 and for a conducting particle we have
η= 1. Clearly, there is no solution for ho > R̄ . We shall now
look at combinations of parameters for which a solution exists.

The search for resonances is facilitated by Figs. 4 and 5,
where R p(∞) and η are graphed as functions of ε̂2 = ε2/ε1

and ε̂p = εp/ε1, respectively. We can only have peaks inϒk(h)
if R p(∞) and η have the same sign. This leaves five possibil-
ities. The most obvious case is ε̂2 > 1, ε̂p > 1, corresponding
to a dielectric medium and particle. Then 0< R p(∞) < 1,
0<η < 1, so ηR p(∞) < 1. We then see with Eq. (59) that
for this case there are no solutions for h > R̄ . The second
possibility is ε̂2 > 1, ε̂p <−2. Then 0< R p(∞) < 1,
η > 1, and this could be possible. It should be noted that
“possible” means that for certain values in the given range
there may be a solution, but it does not imply that for all
parameters in this range there is a solution. For instance, for
εp→−∞(η= 1; conducting particle) there is no solution
satisfying Eq. (59). Figure 6 shows |ϒ‖(h)|2 and |ϒ⊥(h)|2 for
ε1 = 1, ε2 = 30, εp =−2.15, and R̄ = 0.25. For these values
we have R p(∞)= 0.935, η= 21. Then R p(∞)η= 19.6, and
with Eq. (59) we find that the ‖ resonance should be located
at ho ≈ 0.34, and the ⊥ resonance should then be located at
1.26× 0.34= 0.43. This is in good agreement with the graphs.
The curves should be compared to the dotted line at unity in
Fig. 6, which represents the value if the reflected dipole radia-
tion would not have been taken into account. We notice that
the peaks are huge, and in particular the ‖ resonance gives an
enhancement of about 15 for these parameters. Any damping
in ε2 or εp (positive imaginary parts) will in general lead to a
reduction of peak heights.

The third possibility is ε̂2 <−1, ε̂p > 1. Other possibilities
are ε̂2 <−1, ε̂p <−2, and −1< ε̂2 < 1, −2< ε̂p < 1. The
graphs are all very similar to Fig. 6. Usually, the ‖ resonance is
the strongest, but there are exceptions. There is also the pos-
sibility that the ‖ peak is to the left of h = R̄ and the⊥ peak is to
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Fig. 5. The graph shows η as a function of ε̂p = εp/ε1.

Fig. 6. Shown are |ϒ‖(h)|2 (solid line) and |ϒ⊥(h)|2 (dashed line)
as a function of h and for the parameters given in the text. The particle
can only be located to the right of the vertical dashed line.

the right. In this case there is effectively only one resonance. It
should finally be noted that the presence of these resonances is
the exception rather than the rule. They only appear for specific
values of the parameters.

9. FUNCTION do(h)2

The solution for the dipole moment, given by Eq. (39), is a
complex-valued vector d. In the results for the power (next
section), this vector only comes in as

do(h)2 = d∗ · d. (61)

We have

do(h)2 =

[|ϒ‖(h)|2m(h)∗
‖
·m(h)‖ + |ϒ⊥(h)|2m(h)∗

⊥
·m(h)⊥]|α|2 E 2

o ,

(62)

and there are no cross terms between ‖ and ⊥. Without the
surface, this would be do(h)2 = |α|2 E 2

o . The functions mk(h)
account for the laser reflection, and this gives undamped oscilla-
tions as a function of h . The functionsϒk(h) include the effect
of the reflected dipole radiation. We graph do(h)2/(|α|2 E 2

o),
so that any deviation from unity is due to the surface. The solid
curves are the solutions given by Eq. (62), and the dashed curves
are the solutions with ϒk(h)= 1. So, any difference between
solid curves and dashed curves is due to the reflected dipole
radiation. For h small, we have do(h)2 ∼ h6, sinceϒk(h)∼ h3.

Figure 7 shows a typical example. The radius is R̄ = 1.5,
εp = 3, ε1 = 1, and ε2 = 5. The angle of incidence is θi = 60◦,
and we have s polarization (a s = 1, a p = 0). We see that there
is hardly any difference between the solid and dashed curves in

Fig. 7. The figure shows do(h)2/(|α|2 E 2
o ) with (solid line) and

without (dashed line) the function ϒk(h), as a function of h . The
parameters are given in the text.

Fig. 8. The figure shows do(h)2/(|α|2 E 2
o ) for the parameters given

in the text.

the region h > R̄ , so the reflected dipole radiation has as good
as no effect here. A more interesting result is shown in Fig. 8.
The parameters are R̄ = 0.25, εp =−2.15, ε1 = 1, ε2 = 30,
θi = 60◦, and a s = a p = 1 (circular polarization). For h slightly
larger than R̄ , a peak appears, which is due to the resonances in
ϒk(h). The larger peak is the ‖ resonance, and the smaller peak
on the right is due toϒ⊥(h).

10. POWER EMISSION

The emitted power is determined by the oscillating dipole
moment and its environment. It has two contributions:

Pe (h)= Ps (h)+ Pr (h). (63)

For a dielectric particle it is more common to call this the scat-
tered power. The Ps (h) is the emitted power due to the source
field and is given by Eq. (41). For an embedded dipole, but with-
out the interface, we have d2

o = d∗ · d= |α|2 E 2
o , as in Section 7,

but with the interface this becomes d2
o from Eq. (62). This gives

for the source power

Ps (h)=µ1n1 P f [|ϒ‖(h)|2m(h)∗
‖
·m(h)‖

+ |ϒ⊥(h)|2m(h)∗
⊥
·m(h)⊥]. (64)

Here we have introduced

P f =
ωk3

o

12πεo
|α2
|E 2

o , (65)

as the emitted source power for a dipole in a laser beam, but in
free space. Thenµ1n1 P f is the emitted power for an embedded
dipole in a laser beam.

The term Pr (h) in Eq. (63) is the modification of the power
emission due to the reflected dipole field, and is given by
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Fig. 9. Functions w‖(h) and w⊥(h) for ε1 = 1 and ε2 =

10+ 0.001 ∗ i .

Pr (h)=
1

2
ωIm[d∗ · Er (ro)]. (66)

With d given by Eq. (39) and Er (ro)by Eq. (13), we find

Pr (h)=
3

4
µ1n1 P f {|ϒ‖(h)|2[m(h)∗‖ ·m(h)‖]ReW‖(h)

+ |ϒ⊥(h)|2[m(h)∗⊥ ·m(h)⊥]ReW⊥(h)}. (67)

Adding Eqs. (64) and (67) yields the final result:

Pe (h)=µ1n1 P f {|ϒ‖(h)|2[m(h)∗‖ ·m(h)‖]w‖(h)

+ |ϒ⊥(h)|2[m(h)∗⊥ ·m(h)⊥]w⊥(h)}. (68)

The functionswk(h) are defined as

wk(h)= 1+
3

4
ReWk(h), k = ‖,⊥. (69)

Comparison with Eq. (64) for the power emitted by the source
field shows that the contributions from the reflected dipole
radiation (interference) are accounted for by the functions
w‖(h) andw⊥(h). These functions are identical to the radiative
decay rates for a molecule near an interface with a parallel or
perpendicular dipole moment [5].

For h large we have wk(h)→ 1, since Wk(h)→ 0, and for
intermediate values of h the functionswk(h) are oscillatory. The
behavior for small h follows from Eqs. (21) and (30):

wk(h)=
3δk

β3

ε1

|ε2 + ε1|
2

Imε2 + . . . , h→ 0. (70)

The functions diverge to +∞ as 1/h3 for h→ 0 if ε2 has
an imaginary part, and w⊥(h)≈ 2w‖(h). If Imε2 = 0,
the approach to h→ 0 is undetermined by Eq. (70).
Figure 9 illustrates w‖(h) and w⊥(h) for Imε2 6= 0. We have
ε2 = 10+ 0.001 ∗ i , and we see that even this small Imε2 makes
the functions diverge for h→ 0. In Fig. 10 we have ε2 =−1.3,
so Imε2 = 0, and we see that both w‖(h) and w⊥(h) remain
finite for h→ 0.

Fig. 10. Functionsw‖(h) andw⊥(h) for ε1 = 1 and ε2 =−1.3.

Fig. 11. Normalized power for a dielectric sphere with R̄ = 0.4.
The other parameters are given in the text.

Equations (31) and (32) give the functions W‖(h) and
W⊥(h) for a perfect conductor. With Eq. (69) we then find for
thewk(h) functions

w‖(h)= 1−
3

2β

[
1

β
cos β +

(
1−

1

β2

)
sin β

]
, (71)

w⊥(h)= 1−
3

β2

(
cos β −

1

β
sin β

)
, (72)

and expanding forβ small gives

w‖(h)=
1

5
β2
+ . . . , (73)

w⊥(h)= 2−
1

10
β2
+ . . . . (74)

Rather than diverging for h→ 0, as in Eq. (70), these functions
remain finite for a perfect conductor.

The h dependence of Pe (h) comes in through the functions
m(h), ϒk(h), and wk(h), representing the laser and its reflec-
tion, the surface-modified dipole moment, and the influence
of interference, respectively. Most interesting is the behavior
of Pe (h) for h small. When the dipole moment d is assumed to
be given, the h dependence only enters through wk(h). These
functions diverge as 1/h3 when there is damping in the material,
whereas for Imε2 = 0 these functions may remain finite. When
the laser excitation mechanism is taken into consideration, the
function m(h) contributes. This function is finite at all dis-
tances, so it does not alter the behavior of the power for h→ 0.
When the effect of the reflected dipole radiation on the value
of d is taken into account, we get factors of |ϒk(h)|2, and with
Eq. (55) these factors go to zero as h6. Combined with the h
dependence of wk(h), this gives Pe (h)≈ h3 or higher order.
For a perfect conductor we have Pe (h)≈ h6. So, instead of
diverging for h→ 0, the power goes to zero quickly when the
surface contribution to the induced dipole moment is taken into
consideration.

We normalize the power as Pe (h)/(µ1n1 P f ), so that any
deviation from unity is due to the presence of the inter-
face. Figure 11 shows the emitted power as a function of
the distance h to the interface. The parameters are ε1 = 1,
ε2 =−2+ 0.1× i , R̄ = 0.4, εp =−3, θi = 30◦, a s = 1, and
a p = 1. We have R p(∞)= 3 and η= 4. With Eq. (59) we
expect a peak due to ϒ‖(h) at ho ≈ 0.46, which agrees rea-
sonably well with the graph. A possible peak due to ϒ⊥(h) is
absent. It can be shown that this is due to the fact that ϒ⊥(h)
does not have a pronounced maximum for these parameters.



614 Vol. 38, No. 5 / May 2021 / Journal of the Optical Society of America A Research Article

The dashed curve is the power with |ϒk(h)|2 set equal to unity,
so the deviation of the solid curve from the dashed curve is due
to the contribution of the reflected dipole radiation to the dipole
moment.

11. CONCLUSIONS

The electric dipole moment of a small particle near an interface
is induced by a laser and its reflection at the interface and by
the reflected dipole radiation. In most theoretical approaches,
including our own, the dipole moment d is assumed to be given.
When the laser and its reflection provide the mechanism for
inducing the dipole moment, such an approach is justified, since
this decouples from the emission of radiation by the dipole.
However, when the particle is close to the interface, the reflected
dipole radiation also acts on the particle as an external field,
and it adds to the induced dipole moment. We have derived
an expression for the induced dipole moment, Eq. (39), which
takes into account the reflected dipole radiation. This does not
simply add to the dipole moment, since the reflected radiation
depends on the dipole moment, so the reflection modifies its
own source. We have shown that this effect can be included by
means of resolvent functionsϒ‖(h) andϒ⊥(h), Eq. (38), which
depend on the dimensionless distance h between the particle
and the interface.

Due to the back action of the dipole radiation on its own
source, the resolvent functions have a resonant structure. It
appears that two, one, or no resonances can be present when
the particle is close enough to the surface. Whether such reso-
nances occur depends on the parameters of the problem. These
resonances are typically in the region where h is smaller than the
radius of the particle. Since a sphere cannot come closer to the
surface than its own radius, these resonances have in general no
effect, but exceptions are possible (Figs. 6 and 8).

We have derived an expression for the power emitted by the
dipole, which includes the effect of the reflected dipole radiation
on the induction of the dipole moment. The resonances in the
functionsϒ‖(h) andϒ⊥(h)may appear in the h dependence of
the power, although this is modified by the polarization of the
laser. In particular, for s polarization onlyϒ‖(h) contributes, so
we have at most one peak due to the resonances.

APPENDIX A

The power emitted by the dipole is given by Eq. (68). One
would expect that this power is supplied by the laser beam. We
shall now verify this. On general grounds, the absorbed power is

Pa =−
1

2
ωIm[d∗ · EL+R(ro)]. (A1)

With Eq. (7) this becomes

Pa =−
1

2
ωEoIm[d∗ ·m(h)]. (A2)

With d from Eq. (39) we have

d∗ ·m(h)=
{
ϒ‖(h)∗[m(h)∗‖ ·m(h)‖]

+ϒ⊥(h)∗[m(h)∗⊥ ·m(h)⊥]
}
α∗Eo. (A3)

Then we substitute this in Eq. (A2), which gives

Pa =
1

2
ωE 2

o

{
[m(h)∗

‖
·m(h)‖]Im[αϒ‖(h)]

+ [m(h)∗
⊥
·m(h)⊥]Im[αϒ⊥(h)]

}
. (A4)

Now we need to work out the factors Im[αϒk(h)]. It follows
from the definition (38) that

ϒk(h)= |ϒk(h)|2 ×
[

1+
i
2
V̄p
∗
Wk(h)∗

]
. (A5)

With Eq. (34) we can expressα in terms of V̄p :

α =
4πεoε1

(n1ko)
3 V̄p , (A6)

and with Eq. (A5) this gives

αϒk(h)= |ϒk(h)|2
4πεoε1

(n1ko)
3 ×

[
V̄p +

i
2
|V̄p |

2Wk(h)∗
]

.

(A7)
Taking the imaginary part yields

Im[αϒk(h)] = |ϒk(h)|2
4πεoε1

(n1ko)
3

×

{
Im(V̄p)+

1

2
|V̄p |

2Re[Wk(h)]
}

. (A8)

Equation (45) was derived under the assumption that no energy
accumulates in the particle for the case of an embedded dipole
in a laser beam, but without an interface. Since this relation only
involves V̄p , it should also hold here. Eliminating Im(V̄p) from
Eq. (A8) gives

Im[αϒk(h)] = |ϒk(h)|2
4πεoε1

(n1ko)
3

× |V̄p |
2 2

3

{
1+

3

4
Re[Wk(h)]

}
, (A9)

and with Eq. (64) this becomes

Im[αϒk(h)] = |ϒk(h)|2
4πεoε1

(n1ko)
3 × |V̄p |

2 2

3
wk(h). (A10)

Then we eliminate |V̄p |
2 in favor of |α|2 with Eq. (34):

Im[αϒk(h)] =
(n1ko)

3

6πεoε1
× |α|2|ϒk(h)|2wk(h). (A11)

Substitution into Eq. (A4) yields

Pa =ω
(n1ko)

3

12πεoε1
|α|2 E 2

o

{
[m(h)∗

‖
·m(h)‖]|ϒ‖(h)|

2w‖(h)

+ [m(h)∗
⊥
·m(h)⊥]|ϒ⊥(h)|

2w⊥(h)
}
,

(A12)

and with

µ1n1 P f =ω
(n1ko)

3

12πεoε1
|α|2 E 2

o , (A13)
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the right-hand side of Eq. (A12) is the same as the emitted power
in Eq. (68). So, the power emitted by the dipole is the same as the
absorbed power from the laser beam. Here we only used Eq. (45)
for V̄p , which is the same as Eq. (44) for α. Clearly, Eq. (44) is
a necessary restriction on the polarizability of a particle if no
energy is accumulating in the particle.
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